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Experimental  resul ts  are presented pertaining to the heat t ransfer  between a spher ical  
probe and a dense bed of granular  mater ia l  vented by a r is ing s t r eam of air. 

A study of the heat t ransfer  between walls and a counterflow-vented granular  bed is not only of theo- 
re t ica l  in te res t  but also of purely pract ical  importance,  especial ly  in the case of r eac to r s  operating with 
a moving dense catalyst  bed. Nevertheless  this problem has not been treated adequately in the l i terature.  

Tes ts  were performed with an apparatus shown schemat ica l ly  in Fig. 1. A counterflow-vented gravi ty  
bed was produced in the ver t ica l  tube 3100 m m  in diameter  and 3000 mm long, to the upper part  of which 
granular  mater ia l  (aluminum silicate catalyst  pellets 5 = 3.5-5o0 mm in size) was continuously fed f rom 
tank i while air was supplied to its lower part.  The bed veloci ty was regulated by means of in terchange-  
able diaphragms 11 with different hole s izes and placed at the tube exit. An e lec t r ica l ly  heated spherical  
probe 25 mm in d iameter  with a thermal  flux sensor  attached to its surface was held in place along the 
tube axis at an 800 mm distance f rom top section of the tube. The probe design has been descr ibed in [5]. 
F r o m  tube 3 the loose mater ia l  was fed f rom tank 7 into tank 1 by continuous-flow pneumatic t ranspor t .  
For  this purpose, the s l ider  8 was opened periodical ly  and the mater ia l  was passed into the intermediate  
tank 9. After that, the sl ider  was again closed and air was supplied under a p ressure  of 1.5-2.0 bars .  

The mean veloci ty of the bed was determined by two methods: a) by measur ing the flow ra te  of ma -  
ter ia l  through tube 3 during a definite period of time; and b) by di rec t ly  measur ing  the veloci ty  of par t ic les  
at the tube wall. For  this purpose, a groove had been cut in the tube, parallel  to its axis, into which a 
s t r ip  of Plexiglas was mounted flush with the inside tube surface.  The mean veloci ty of the bed differed 
f rom the veloci ty  of par t ic les  on the average by 8-12%. The flow rate  of venting air was measured  with a 
knife-edge diaphragm which had been precal ibrated against a gas meter .  In these tests  the bed velocity 
was var ied f rom 0.42 �9 10 -2 to 4 .32 .10  -2 m / s e c  (15-155 m/h )  and the air veloci ty was varied f rom 0.05 to 
0.5 m / s e c .  

It follows f rom the differential equations of continuity, motion, energy, and heat t ransfer ,  with the 
boundary conditions and the uniqueness conditions taken into account, that the general  cr i t ical  equation of 
the s teady-s ta te  heat t ransfer  between a counterflow-vented gravi ty  bed and a spher ical  surface is 

NUcf~/(Pet~ PefFr b, Pr, d/6, (D--d)~25). (1) 

For  the specific test  conditions (uninterrupted bed flow, constant values of d, D, and 5, and bed ventilation 
with air at a constant temperature)  re lat ion (1) becomes 

Nucf = fl (Peb, Per). (2) 

The coefficients of local heat t ransfer  were determined d i rec t ly  at the probe surface.  The mean 
coefficient of heat t r ans fe r  between probe and bed C~cf was calculated f rom the test  values of C~lo c at var ious  
attitude angles (between the veloci ty vector  w and the normal  to the sphere  surface at the point where the 
thermal  flux sensor  was attached). 
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Fig. 1. Schematic d iagram of the test  
stand: 1, 7, 9) tanks; 2) sighting glasses ;  
3) test segment;  4) probe; 5) diaphragm; 
6) valve; 8 )ga te ;  10) sl ider,  stand pipe; 11) 
limit washer ;  a) air inlet; b) compressed  
air. 

The test  values for the heat t ransfer  between the probe and the counterflow-vented gravi ty  bed at 
var ious  values of w and u could be general ized by the following relat ion {Fig. 2): 

�9 ~ pe b \ 0.32 
Nucf = 1 "-]- 1 - 5 5 / ~  ) (3) 
Nuf 

Here  Nuef, Nuf, and Pef were r e fe r red  to the thermophysical  proper t ies  of the boundary gas layer  at the 
sphere surface at a mean tempera tu re  t = 0.5(tp + tb), while Pe b was r e fe r r ed  to the thermophysical  prop-  

- -  S er t ies  of the bed. The effective thermal  conductivity was calculated by the formula  sugge ted in [2]: 

0.31s + 0.43 
Zeff= 29.7L lg 

e - -  0.26 

When calculating the effective thermal  conductivity h e f  t and thermal  diffusivity a e f f =  ~eff(1 - e)PTCT, it 
was assumed that e = 0.4, PT = 1300 kg/m 3, and c T = 0.837 k J / k g ,  deg [6]. The second t e rm on the r ight-  
hand side of (3) cha rac te r i zes  the additional heat t ransfer  in a counterflow-vented bed above that in a 
s ta t ionary vented bed of granular  mater ia l  which is due to the motion of the bed. Evidently, the increase  in 
Nucf above Nf will be g rea te r  as the f i l t rat ion velocity dec reases  relat ive to the bed velocity. On t h e b a s i s  
of a tes t  ser ies  at u -- 0, we have obtained the following relation: 

Nuf ~- 6.6 Pe~ ,47. (4) 

The values of a f  calculated according to (4) agree sa t i s fac tor i ly  (within about *107c discrepancy) with pub- 
lished data on the heat t r ans fe r  in a s ta t ionary bed of granular  part icles  with fi l trat ion [1]. 

Relation (3) is valid for 56 -< Pef _< 600 and 160 <_ Pe b _< 1600. The dispers ion of test  points did not 
exceed • With d ,  D, and ~ having been held constant, relat ion (3) does in fact ref lect  only the effect of 
the bed velocity and of the fi l trat ion velocity and is~ in this sense,  of a limited scope. 

The distribution of Otlo c over the probe surface at var ious  test  conditions is shown in Fig. 3. 

When W = 0 (probe in an unvented gravi ty bed), the minimum ~loc was observed at the front point of 
the probe (~ = 0~ At la rger  attitude angles ~loc  increased.  Unlike in [4], where the heat t ransfer  be-  
tween a horizontal  tube and an unrented gravi ty  bed was studied, no stagnant p r i sm of part icles  had built 
up at the s te rn  of the probe and the maximum a loc  was observed at the s tern  point (q~ = 70. Apparently, 
this can be explained by the fact that the part icles  in our test were la rger  than in [5]. As the bed velocity 
was increased,  we observed a fas ter  increase  in a Ioc  at the s te rn  part  of the probe. At the front part C~lo c 
varied slightly, which had to do with the separat ion of part icles  f rom the probe surface.  When u = 0 (filtra- 
tion through a s ta t ionary bed), the maximum Celo c was at the front of the probe. The O~lo c distribution 
over the probe surface in this case resembled the ~loc distr ibution over the sphere surface and the c i rcu lar  
cylinder s u r f ace  in a laminar s t r eam of pure air [3], with the difference that in a s t r eam of pure air the 
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Fig.  2. Genera l i zed  r e l a t i o n  c h a r a c t e r i z i n g  the heat  t r a n s -  
fe r  between a s p h e r i c a l  probe and a counter f low-vented  
dense g rav i ty  bed. 

/ ' %  \\I' Fig,  3. Dis t r ibu t ion  of loca l  hea t -  
t r a n s [ e r  coeff ic ients  a ,  W / m  2 . deg, 
over  the probe su r i ace :  1) unvented 
g rav i ty  bed ~4th u = 1.2 �9 10 -2 m 
/ sec;  2) s t a t i o n a r y  vented bed with 
w = 0.27 m / s e c ;  3) counter f low-  
vented bed with u = 0.42 �9 10 -2 m / s e c  
and w = (LOS m / s e c ;  4) eounter~low- 
vented bed with u = 4.32 - 10 -2 m / s e c  
and w =  0.1 m / s e c .  

value  of a l o  e i n c r e a s e d  s tepwise  at the s t e r n  of the probe.  In 'a  vented s t a t i ona ry  bed a l o e  d e c r e a s e d  mono-  
ton ica l ly  with i n c r e a s i n g  ~0 and the min imum S ic  c was at the s t e r n  point of the probe.  

In the counter f low-vented  g rav i ty  bed the a t o  c d i s t r ibu t ion  over  the probe su r f ace  was m o r e  uni form 
than in the unvented and in the s t a t iona ry  bed. It is  i n t e r e s t i ng  to note that the point of max imum a t o c  in 
the counter f iow-vented  bed was somewhat  d i sp laced  f rom the s t e r n  point of the probe.  Except  tn the t e s t  
s e r i e s  with u = 0.42" I0 -~ m / s e c ,  where  the o:1o c d i s t r ibu t ion  over  the probe sur face  was a lmos t  uniform, 
a, lo e at the s t e r n  pa r t  of the probe was higher  than at the f ront  par t .  This ind ica tes  that in these  t e s t s  the 
downward flow of the bed had the predominant  effect  on the total  heat  t r a n s f e r  between the probe su r f ace  
and the counter f low-vented  bed of g r a n u l a r  m a t e r i a l .  

NOTATION 

a i s  the the rmal  dif fusivi ty;  
c is  the spec i f i c  heat;  
d is  the probe d i a m e t e r ;  
D is  the tube d i a m e t e r ;  
t i s  the t e m p e r a t u r e ;  
u is the bed velocity; 

w i s  the f i l t r a t i on  ve loc i ty ;  
a is  the h e a t - t r a n s f e r  coeff icient;  
5 is the g r a i n  d i a m e t e r ;  

is  the t he rma l  conduct ivi ty;  
p is the density; 
c is  the bed poros i ty .  

S u b s c r i p t s  

p r e f e r s  to the probe;  
loc r e f e r s  to local ;  
o refers to initial; 
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cf refers  to counterflow; 
b refers  to bed; 
T refers  to material; 
f refers  to filtration; 
eff refers to effective. 
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